Balances of m-bonacci Words

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Balances of m-bonacci Words

The m-bonacci word is a generalization of the Fibonacci word to the m-letter alphabet A = {0, . . . ,m − 1}. It is the unique fixed point of the Pisot–type substitution φm : 0 → 01, 1 → 02, . . . , (m − 2) → 0(m − 1), and (m − 1) → 0. A result of Adamczewski implies the existence of constants c such that the m-bonacci word is c-balanced, i.e., numbers of letter a occurring in two factors of the...

متن کامل

Diffractive m-bonacci lenses.

Fibonacci zone plates are proving to be promising candidates in image forming devices. In this letter we show that the set of Fibonacci zone plates are a particular member of a new family of diffractive lenses which can be designed on the basis of a given m-bonacci sequence. These lenses produce twin axial foci whose separation depends on the m-golden mean. Therefore, with this generalization, ...

متن کامل

Ambiguity in the m-Bonacci Numeration System

akGk, where ak ∈ N0, see for instance [8]. Some sequences (Gk)k∈N have even nicer property: Every positive integer can be expressed as a sum of distinct elements of the sequence (Gk)k∈N. The necessary and sufficient condition so that it is possible is that the sequence satisfies G1 = 1 and Gn −1 ≤ ∑n−1 i=1 Gi for all n ∈ N. Example of such a sequence is (2)k≥1 or (Fk)k≥1, the sequence of Fibona...

متن کامل

Generalized balances in Sturmian words

One of the numerous characterizations of Sturmian words is based on the notion of balance. An innnite word x on the f0;1g alphabet is balanced if, given two factors of x, w and w 0 , having the same length, the diierence between the number of 0 0 s in w (denoted by jwj0) and the number of 0 0 s in w 0 is at most 1, i.e. jjwj0 ? jw 0 j0j 1. It is well known that an aperiodic word is Sturmian if ...

متن کامل

On the Number of Partitions of an Integer in the m-bonacci Base

— For each m > 2, we consider the m-bonacci numbers defined by Fk = 2 k for 0 6 k 6 m− 1 and Fk = Fk−1 +Fk−2 + · · ·+Fk−m for k > m. When m = 2, these are the usual Fibonacci numbers. Every positive integer n may be expressed as a sum of distinct m-bonacci numbers in one or more different ways. Let Rm(n) be the number of partitions of n as a sum of distinct m-bonacci numbers. Using a theorem of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fundamenta Informaticae

سال: 2014

ISSN: 0169-2968

DOI: 10.3233/fi-2014-1031